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The diffraction of X-rays by a cylindrical lattice is of interest in connection with the structure of 
chrysotile and some other minerals. A cylindrical lattice model is defined, and it is shown to give 
a set of reflexions in the same directions as certain of the reflexions from a rotating crystal. These 
reflexions have a shape similar to that of reflexions from a normal crystal, and their integral breadth 
is evaluated in terms of the number of co-operating cylindrical layers. The amplitudes of the re- 
flexions are related to the Fourier coefficients of the electron-density distribution projected on to 
a radial plane, provided that the projection is defined in a special way. A second set of reflexions 
is also produced which is analogous to, but not identical with, that from a cross-grating. 

1. Introduction 

It  has been shown by electron microscopy that  the 
ult imate particles of the silicate minerals chrysotile, 
garnierite, and halloysite, have the form of hollow 
cylinders (Bates, Sand & Mink, 1950; Noll & Kircher, 
1951, 1952). Of these minerals chrysotile has been 
studied extensively by X-ray diffraction, and it has 
been known for many  years that  oriented fibres of 
chrysotile give diffraction patterns which resemble in 
some respects those given by rotating single crystals 
(Warren & Bragg, 1930; Aruja, 1943). These workers, 
and more recently Padurow (1950) and Whit taker 
(1951, 1952) have discussed the form and dimensions 
of the unit  cell of chrysotile on the assumption that, 
in so far as the diffraction pattern appears to resemble 
a single-crystal rotation photograph, it may be treated 
as such. Structure analyses of chrysotile of varying 
degrees of completeness (Warren & Hering, 1941; 
Aruja, 1943; Whittaker,  1953) have also been made 
on the same assumption, and have shown that  starting 
from this assumption it is possible to interpret the 
diffraction pattern on the basis of a layer structure 
corresponding to a magnesium analogue of the kaolin 
minerals. It  has been pointed out by Pauling (1930) 
that  the layers in such a structure would be expected 
to curve, and Whit taker  (1953) has adduced evidence, 
from the detailed structure analysis, that  this is indeed 
the case. It  follows that  the tubular  form observed 
by electron microscopy is no mere habit  phenomenon, 
but corresponds to the existence of a tubular  layer 
structure. This at once suggests the possibility of a 
self-contradiction within the published structural work, 
since this has been carried out as though the diffrac- 
tion pattern were that  of a normal rotating single 
crystal, or an assembly of such normal crystals 
oriented with one axis parallel. The present work is 
therefore devoted to a theoretical analysis of the dif- 
fraction from a tubular  structure of this type, in order 
to ascertain the extent to which it resembles, and the 

extent to which it differs from, the diffraction from 
a normal rotating crystal. 

It  seems physically probable that  a cylindrically 
curved layer structure would adopt a spiral form 
rather than the form of a set of coaxial circular cyl- 
inders, although it may be noted that  the relationship 

nb = 2~a', 

where a' is the interlayer spacing, b is the circum- 
ferential repeat distance and n is an integer, is 
(at least approximately) obeyed by chrysotile, with 
a value of n = 5. The latter form cannot, therefore, 
be ruled out. Moreover, the theory of diffraction by 
such a spiral cylinder involves mathematical  difficulties 
which are still under investigation, and it may be 
supposed that  the two cases will not differ excessively 
from one another. The theory presented is therefore 
that  for a set of layers in the form of coaxial circular 
cylinders. 

Some of the characteristics of diffraction by cylin- 
drical structures have been discussed by Oster & Riley 
(1952), but their results are not sufficiently general 
for the present purpose. Other results have been 
obtained by Fock & Kolpinsky (1940) and by Black- 
man (1950), and these will be referred to later. 

2. Nomenc la ture  and a s s u m p t i o n s  

If we consider a set of congruent plane lattices wrapped 
into the form of a set of coaxial circular cylinders 
with their radii in arithmetic progression, then it 
follows that  there must be complete azimuthal  dis- 
order between successive cylinders, because the same 
arcual repeat distances on different cylinders will 
subtend different angles at the axis. Therefore, in 
order to simplify the problem, we consider a lattice 
in which the diffracting matter  is distributed uniformly 
in azimuth. The effect of this assumption is considered 
in § 7. The further definition of the distribution of 
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diffracting matter is most conveniently made in terms 
of the following coordinate system. 

Let the z axis lie along the common axis of the 
cylinders, and let an arbitrary origin 0 be taken on the 
z axis. Then let the position of any point A be defined 
in terms of the coordinates Q, q, z, where 

is the distance of A from the z axis, measured parallel 
to the surface of a cone of a semi-vertical angle 
~-/~,  coaxial with the cylinders, and with its vertex 
at 0;  

z is the distance of A from the surface of this cone 
measured parallel to the z axis; and 
is the dihedral angle between the plane ~Oz and an 
arbitrary initial radial plane. 

Then if G(~, ~, z) is the density of diffracting matter 
at the point ~, ~, z we define the lattice as a distribu- 
tion of diffracting matter such that  

G(~, ~, z) sin ~dQdz = g when ~ = ao+ma and z = nc 
and 

G(o, ~, z) = 0 elsewhere, (1) 

where 9, a0, a and c are constants, and m, n may take 
a range of integral values. 

The diffracting matter is thus distributed with a 
uniform linear density g along circles which lie at the 
loci of intersection of a set of coaxial cylinders of radii 
(a0+ma) sin ~ and a set of cones, coaxial with the 
cylinders, with semi-vertical angle ~ - f l ,  and displaced 
by successive steps, equal to c, parallel to their common 
axis. This distribution provides a lattice model, cor- 
responding to clino-chrysotile, but in which the 
distribution of matter round the cylinders is smoothed 
to a mean value. If ~ is put equal to ½~ we obtain a 
lattice model corresponding in the same way to ortho- 
chrysotile. 

3. The  ref lex ion condit ions  for the cyl indrical  
latt ice 

In accordance with the usual theory of diffraction, 
the amplitude of a diffracted ray at a distant point, 
distant R from the origin, is given by 

F(S) =QIG(r )exp (~ - - - i r . S )dv ,  (2) 

r 

where 

Q is the electron-scattering function, 
r is the position vector of the point ~, ~, z, 
S is the diffraction vector, 

and 

)~ is the wavelength. 

We then express r in terms of ~, ~, z, and S in 
terms of a set of coordinates Q*, ~, z*, reciprocal to 
these, which we define as follows: 

~* is the distance of a point in diffraction space 
measured outward from the convex surface of a 
cone with vertex 0 and semi-vertical angle ½~-/~ 
and with its axis along the z axis. The distance ~* 
is measured parallel to the plane through 0 per- 
pendicular to the z axis. 

z* is the distance of a point in diffraction space from 
this plane, measured in a direction parallel to the 

above conical surface. 
Y is the dihedral angle between ~*Oz* and the initial 

plane in terms of which ~ was defined. 

In terms of these variables (2) becomes 

F(~*,Y,z*) = ~ l l l  G(~, q~, z) 

~z* sin ~ cos ~÷zz* sin ~]~ Q sin ~ ~dQdq~dz, + 
J 

(3) 

where the integrations are to extend over the whole 
volume of the fibre. 

Inserting the conditions on G(~, ~, z) given in (1), 
we can reduce two of the integrals in (3) to summa- 
tions. We are also able to effect a partial separation 
of the variables, and to obtain an integral which can 
be evaluated directly as follows: 

F(0*, Y, z*) = -~  n exp ncz* 

× / " ~ e x p [ ~  i (a°+ma)z* sin fl c°s 

x ( % + ~ )  sin ~ exp ~ (%+ma) 
o 

x (O*-z* cos ~) sin ~ cos d~  (4) 

= .~ exp ~'u~z* sin 

x ~ e x p [ ~  

x 2~(a0+ma)s in~Jo[2-~(ao+ma)(~*-z*eos~)s in~] .  

(5) 
The first summation in (5) is exactly the same as 

that which occurs in the theory of diffraction by a 
normal crystal. I t  has appreciable values only in the 
vicinity of the planes in reciprocal space 

z* = 12/c sin 8 ,  where l is an integer. 

I t  follows that  the rays diffracted from our model fibre 
will give rise on a photograph to layer lines of the 
usual form. 

The second summation in (5) defines the distribution 
of the diffracted amplitude on any such layer plane. 
The summation is independent of T, and therefore has 
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circular symmetry.  I ts  form may  be conveniently 
evaluated if we introduce the approximation 

Jo(x) "" (2/~x)½ cos (x-¼g) . 

This approximation is valid to within 2 % of the value 
of the nearest maximum of Jo(x) for most values of 
x in which we are interested in practice (for the 
exception see below), and over the greater part  of the 
range to a much higher degree of accuracy than this. 
(The range of interest is about 0.04 < ~ < 2.0 for 
Cu K s  radiation. With  a probable minimum value 
of a 0 = 4a and a maximum value of m = 14, this gives 
a range of 5 < x < 1000.) If we introduce this ap- 
proximation in exponential form into (5), the summa- 
tion with respect to m becomes 

2 sin fl ½ ~ (ao+ma)½ q,  ( E ) { ~  exp [ ~  s inf l (a0+ma)-¼zd ] 

+.~ (ao+ma)½ exp [ ~  (2z* cos fl-Q*) 
m 

The first summation in (6) has appreciable values only 
in the vicinity of 

~* = h]t/a sin f l ,  where h is a positive integer, 

and similarly the second summation has appreciable 
values only where 

~* =2z* cos f l -h2/a  sin fl, where h is a negative integer. 

The distribution of intensity in reciprocal space is 
therefore confined to rings whose positions are ap- 
proximately specified by 

= ha*ilc* cos fl, ~ = lc* sin f l ,  

where a* and c* are related to a and c in the usual 
way. The intensity of these rings will be inversely 
proportional to ~ on account of the factor (2 sin fl/~)½ 
in (6). In  a practical diffraction experiment, however, 
the intensity recorded for each ring (after making 
allowance for geometrical factors and other experi- 
mental  corrections) will be tha t  contained within an 
angular range of T equal to (~, where ~ is the divergence 
of the incident beam. The corrected observed inten- 
sities will therefore all be equal and independent of ~. 

The approximation for the Bessel function in terms 
of a cosine is not valid for ~ -  0, i.e. for reflexions 
with h = 0 when fi = ½g. However, since all the 
Bessel functions in the summation (5) have maxima 
at  ~ = 0 it follows tha t  a diffraction maximum also 
occurs in this position. 

Thus it is concluded tha t  a cylindrical lattice of the 
type  considered gives reflexions in the same directions 
as the hO1 reflexions from a three-dimensional recti- 
linear lattice rotating about its c axis and having the 
same a and c parameters. The intensities of the re- 

flexions have effectively the same dependence on 
direction in both cases. 

4. T h e  prof i le  a n d  b r e a d t h  o f  t h e  r e f l e x i o n s  

For purposes of computation it  is convenient to use h 
as the continuous variable and to normalize the re- 
flexion intensity to have a maximum value of unity.  
We therefore compute the function 

.~, (ao/a +m)½ exp [2~ih(ao/a+m)-¼zd ] ~ 
I(h) = . (7) 

m 

(~(aola+m)+)+ 

The results for various ranges of m, and for two 
values of ao/a, are shown in Fig. 1. The values of these 

(c) 

~ ( a )  

0~5 . . . .  1"0 . . . .  l t5  

h 

Fig. l. I(h) computed from equation (7) with values of ao/a 
and ranges of m as follows: 

(a): ao/a= 8 m-~ 0-7 
(b): ao/a= 8 or 12 m----- 0-3 
(c): a o / a  = 8 m .-~ 0-1 

Successive curves axe displaced vertically for clarity. 

parameters are chosen within the range which is of 
interest in the chrysotile problem. The curves exhibit 
a principal maximum at the integral value of h together 
with small subsidiary maxima at  either side, and are 
of a form very similar to those for normal crystal  
reflexions. The areas under the principal maxima, 
and hence the integral breadths, have been determined 
graphically. The integral breadths are found to be 

0"5 

B(h) 

I I I I 
o o'.s 

1/M 
Fig. 2. The integral breadths of the principal maxima as a 

function of the reciprocal of the number of cooperating 
cylinders. 
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independent of the radius of the innermost cylinder, 
and to vary  with the number of cooperating cylinders,  
M, as shown in Fig. 2. With  M > 3 the relation is 
found to be 

B(h) = 0.92/M.  

This is closely analogous to the corresponding formulae 
for normal crystals of various shapes. 

5. The effect of mul t ip l i c i ty  on the ref lexions  

When either z* or cos fl becomes zero, expression (6) 
reduces to 

E'(a0+ma)½ cos - -  5" sin fl(a 0 

(8) 

Expression (8)' is proportional to the amplitude of a 
reflexion of multiplicity 2; i.e. either to a reflexion of 
the type  h00+)~00, or to a reflexion of the type hOl+hO1 
from a lattice with fl = ½~ (corresponding to ortho- 
chrysotile). I t  follows tha t  in such circumstances the 
two "reflexions are additive by amplitude, and not by 
intensity as is the case with multiple reflexions from 
a single crystal. Physically we may explain the dif- 
ference as follows. Every  reflexion from the cylindrical 
lattice is being produced continuously and therefore 
simultaneously. If two such reflexions occur in the 
same direction they must  be capable of mutual  inter- 
ference. Two reflexions in the same direction from a 
normal rotating crystal always occur consecutively, 
and their effects are therefore additive by intensity. 

The intensity formula corresponding to (8), and 
analogous to (7), is 

ICh+') 4{~(a°/a+m)½c°s[2xeh(a°/a+m)-~x~]}9 

= (E(ao/a+m)½)9. (9) 

This has a maximum peak value of four times tha t  of 
(7). However, when I(h+fz) is plotted and compared 
with the corresponding curve for 4/(h), as in Fig. 3, 

li 

l(h) 

( ~ ) 

a) 

0~9 1~0 I~I 
h 

Fig. 3. Comparison of the intensity curve for a multiple 
reflexion hOl%hOl (curve (a)), with four times that for a 
single reflexion hOl (curve (b)). The number of cooperating 
cylinders is eight in each case. 

it is seen tha t  the integrated intensity is only twice 
tha t  for a single reflexion on account of the fine struc- 
ture which has appeared. This fine structure arises 
from the fact tha t  within the single reflexions there 
exist continuous fluctuations of phase which are dis- 
posed differently, in the +h  and - h  reflexions, with 
respect to the centre of the reflexion. These differences 
of disposition are such tha t  when the two reflexions 
are superimposed the phase contrasts are converted to 
intensity contrasts and the amplitude becomes wholly 
real, as is shown by expression (8). Thus, in spite of 
considerable differences in the theory, the effect of 
multiplicity on the integrated intensity of reflexions 
from a cylindrical lattice is exactly the same as the 
corresponding effect for reflexions from a rectilinear 
lattice. 

6. The intensi ty  of the ref lexions  

In  a real fibre based on a cylindrical lattice there will 
exist an electron-density distribution G(~, ~, z). On 
account of the azimuthal disorder between successive 
layers of the structure, G(Q, ~, z) will not be a regularly 
repeating function in three dimensions, but  we may  
derive from it a regularly repeating function in two 
dimensions, g(~, z), in the following way. 

Consider a radial plane of the cylinder. From all 
points of this plane draw circular arcs centred on the 
cylinder axis and lying in planes perpendicular to tha t  
axis. Continue each such arc until  a point is reached 
whose environment in the cylindrical surface on which 
it lies is identical with tha t  at the starting point of 
the arc. The ends of these arcs will then lie o n  a sex- 
rated surface bounded by sections of radial planes and 
cylindrical surfaces.t Now sum the electron density 
along each arc and assign a corresponding weight to 
the point at  its foot on the initial plane. The pat tern  
of weighted points defined in this way will then 
constitute a regular two-dimensional repeating pat tern  
based on a parallelogram mesh of sides a and c and of 
included angle ft. The function g(~, z) which describes 
this pat tern can be defined as 

g ( ~ , z ) =  b I n 
2:~m o 

where Qm is the value of Q at the mth serration. If  we 
also make the approximation (which is examined in 
§7) 

~G(Q, ~, z)dq~-" 0 ~ ~, z)d~ (10) 
then 

eG(e, ~, z)dq ~ ~-g(e,  z)d~ . 01) 

t The serrations cannot be sharply defined in a real structure 
unless the electron density is zero at some value of q between 
the layers. This will be approximately true in any structure 
which has a sufficiently small steric interaction between 
successive layers to permit it to adopt a cylindrical layer 
structure. 
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Substituting from (11) into (3) and expanding g(~, z) 
as the double Fourier series 

g(Q, z) = 2.~,  (Apq+ iBpq) exp [-2rd(p(~-e)/a +qz/c)] 
P q 

(where the origin of the plane unit cell is chosen at a 
distance e from an integral value of Q/a), we obtain, 
after separating the variables and evaluating the inte- 
gral with respect to ~0 as in (5): 

Q F(q*, Y, z*) = ~ 2J (Apq+ iBpq) 
P q 

X ZZ* 

m ~ sin2 fl exp 

/2~i ) 
× exp (-~- ~z* sin fl cos 

× jo(2-;;~(~*-z*cosfl)sinfl)dQ. (12) 

The integral with respect to z is well known. That with 
respect to ~ can be performed with the aid of the 
readily evaluated integral 

I Jo(aX) exp ( - iax)dx  

= xexp (-iax)(Jo(ax)+iJs(aX)) 
provided that  

~* = p,~/a sin ft. 

Hence at the rSaxima of the refiexions, where T = h 
and q = l, we have 

F(ha*, Y, lc*) 

= (Ahz+iBm) Q Nc b~sin2 fl exp (2rdhe/a).~v,Q~ 
m 

I f  we now make the app rox ima t i on  

Jo(~)+iJ~(~) --  (2/~x)~ exp (i~) 

(which is va l id  for  large x) and pu t  

~m = ao+mX~ = ~m a , 
we obtain 

F(ha*, Y,/~*) 
QNc (~a 3 sin 3 fl\ ½ 

= 2(Ahz+iBm) ~ ~ ~ ) exp (2rdhe/a) 

x 2 # ~ ( / ~ + 1 - / ~ ) .  (13) 

The only quantities in this expression whose moduli 
vary with the indices of reflexion are Am, Bh~ and }. 

Ac7 

The presence of the last can be disregarded in practice, 
as has already been discussed in § 3. I t  therefore follows 
that  the peak intensity of the reflexion h, 1 from a 
fibre of given size is proportional to 2 2 (A~+Bm) only. 
Since the profiles of the reflexions have been shown 
to be invariant over the indices, it follows that  this 
proportionality is also true of the integrated intensity. 

If the peak function used to define the lattice in § 3 
is expressed as a Fourier series, and if the summations 
27/~(~£+1-/~£) in (13) and ~ / ~ ,  which occurs 
7/~ m 

at the maxima of the modulus of (5), are approximated 
by the corresponding integrals, it may be shown that  
the modulus of (12) is identical with the modulus of 
(5) at its maxima, within the limits of accuracy of the 
approximations used. 

7. The effect of the s impl i fy ing  a s s u m p t i o n s  

In defining the cylindrical lattice in § 3 a simplifica- 
tion was effected by letting the diffracting matter be 
distributed uniformly in azimuth. In § 6 a correspond- 
ing assumption was made in using the approximation 
(10). The effect of this simplification must now be 
examined. 

In  the cylindrical lattice let the scattering matter 
be unchanged in amount but be concentrated at points 
separated by arcual distances b along the lattice 
circles. Let the points nearest to the initial plane and 
lying on the mth cylinder have the coordinate 

= ~m. 

Then, if v is an integer such that  

1 ~< v ~< 2zt(a0+ma ) sin fl/b, 

the density function may be defined by the equation 

G(~, q~, z)~ sin ~ fldQdq~dz = bg 
when 

= a 0 + m a ,  

by 

= (a0+ma) sinfl +(~m = ~m,~ 
(say), 

z = n c ;  

and the density is zero elsewhere. 
The integral with respect to q in (4) must then be 

converted into the summation 

~ b  e x p { ~  (a°+ma) 

x (~*-z* cos fl) sin fl cos (~m,,-Y)} • (14) 

Following Fock & Kolpinsky (1940), we expand this 
exponential as a series of Bessel functions to give 
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~ b J ° [ ?  (a°÷ma) (~*-z*  v cos fl) sin fl] 
CO 

+2b ~ .~ i e cos q(qom,,-Y) 
g=l 

(15) 

Since ~ma~. = (2rc/b)(ao+ma)sinfl, the first sum in 
(15) is within a negligible error identical with the inte- 
gral with respect to ~ in (4). 

Thus the expression for F(Q*, Y, z*) may be  split 
into the sum of two parts: the first part  is identical 
with tha t  examined in § 3, while the second part  is 

2 ~-~ ~n exp [2~---i ncz* sin ~] 

[2rd ] 
x ~'~m e x p [ ~  - ' (a°+ma)z* sinfl cosfl 

OO 

x . Z ~  iq cos q(~p,,,,,-Y) 
nq=l 

The expression (16) clearly has appreciable values 
only on the layer planes 

z* = 12/c sin ft.  

The corresponding diffraction effect on these planes 
is strictly additive to (6) by amplitude and not by 
intensity, but following the discussion of multiplicity 
in § 5 we may conclude tha t  the integrated intensity 
of the diffraction maxima given by (6) will be additive 
to the integrated intensity given by (16) over the same 
region. We may therefore regard (16) as introducing 
an additional diffraction effect which is superimposed 
on, but  does not modify, that  already investigated. 

Fock & Kolpinsky (1940) and Blackman (1950) have 
discussed the diffraction effect from a single layer of 
a cylindrical lattice as defined above. Their t reatment  
corresponds to consideration of a single term of the 
summation with respect to m in (16), and shows that  

this corresponds to a series of unsymmetrical reflexions 
each of which has a sharp head and a long taft ex- 
tending to higher values of s ~. Such reflexion profiles 
resemble qualitatively the cross-grating reflexions 
given by plane lattices, although they differ quantita- 
tively. The effect of the summation with respect to 
m in (16) is to make further quanti tat ive changes in 
the reflexion profiles compared with those given by 
Fock & Kolpinsky, and these changes have been 
studied by numerical computation. The results of these 
studies, together with further theoretical considera- 
tions on the diffuse reflexions will be presented in a 
subsequent paper.* 

Thanks are due to the Directors of Ferodo Ltd  for 
permission to publish this paper. 
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